Semantic Role Labeling Via Generalized Inference Over Classifiers

نویسندگان

  • Vasin Punyakanok
  • Dan Roth
  • Wen-tau Yih
  • Dav Zimak
  • Yuancheng Tu
چکیده

We present a system submitted to the CoNLL2004 shared task for semantic role labeling. The system is composed of a set of classifiers and an inference procedure used both to clean the classification results and to ensure structural integrity of the final role labeling. Linguistic information is used to generate features during classification and constraints for the inference process.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combination Strategies for Semantic Role Labeling

This paper introduces and analyzes a battery of inference models for the problem of semantic role labeling: one based on constraint satisfaction, and several strategies that model the inference as a meta-learning problem using discriminative classifiers. These classifiers are developed with a rich set of novel features that encode proposition and sentence-level information. To our knowledge, th...

متن کامل

Semantic Role Labeling Via Integer Linear Programming Inference

We present a system for the semantic role labeling task. The system combines a machine learning technique with an inference procedure based on integer linear programming that supports the incorporation of linguistic and structural constraints into the decision process. The system is tested on the data provided in CoNLL2004 shared task on semantic role labeling and achieves very competitive resu...

متن کامل

Joint Learning Improves Semantic Role Labeling

Despite much recent progress on accurate semantic role labeling, previous work has largely used independent classifiers, possibly combined with separate label sequence models via Viterbi decoding. This stands in stark contrast to the linguistic observation that a core argument frame is a joint structure, with strong dependencies between arguments. We show how to build a joint model of argument ...

متن کامل

Joint learning of dependency parsing and semantic role labeling

When natural language processing tasks overlap in their linguistic input space, they can be technically merged. Applying machine learning algorithms to the new joint task and comparing the results of joint learning with disjoint learning of the original tasks may bring to light the linguistic relatedness of the two tasks. We present a joint learning experiment with dependency parsing and semant...

متن کامل

Dependency Parsing and Semantic Role Labeling as a Single Task

We present a comparison between two systems for establishing syntactic and semantic dependencies: one that performs dependency parsing and semantic role labeling as a single task, and another that performs the two tasks in isolation. The systems are based on local memorybased classifiers predicting syntactic and semantic dependency relations between pairs of words. In a second global phase, the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004